Inactivation of Escherichia coli O157:H7 and natural microbiota on spinach leaves using gaseous ozone during vacuum cooling and simulated transportation.
نویسندگان
چکیده
The aim of this study was to integrate an ozone-based sanitization step into existing processing practices for fresh produce and to evaluate the efficacy of this step against Escherichia coli O157:H7. Baby spinach inoculated with E. coli O157:H7 (approximately 10(7) CFU/g) was treated in a pilot-scale system with combinations of vacuum cooling and sanitizing levels of ozone gas (SanVac). The contribution of process variables (ozone concentration, pressure, and treatment time) to lethality was investigated using response-surface methodology. SanVac processes decreased E. coli O157:H7 populations by up to 2.4 log CFU/g. An optimized SanVac process that inactivated 1.8 log CFU/g with no apparent damage to the quality of the spinach had the following parameters: O3 at 1.5 g/kg gas-mix (935 ppm, vol/vol), 10 psig of holding pressure, and 30 min of holding time. In a separate set of experiments, refrigerated spinach was treated with low ozone levels (8 to 16 mg/kg; 5 to 10 ppm, vol/vol) for up to 3 days in a system that simulated sanitization during transportation (SanTrans). The treatment decreased E. coli populations by up to 1.4 log CFU/g, and the optimum process resulted in a 1.0-log inactivation with minimal effect on product quality. In a third group of experiments, freshly harvested unprocessed spinach was inoculated with E. coli O157:H7 and sequentially subjected to optimized SanVac and SanTrans processes. This double treatment inactivated 4.1 to > or = 5.0 log CFU/g, depending on the treatment time. These novel sanitization approaches were effective in considerably reducing the E. coli O157: H7 populations on spinach and should be relatively easy to integrate into existing fresh produce processes and practices.
منابع مشابه
Characterization of interactions between Escherichia coli O157:H7 with epiphytic bacteria in vitro and on spinach leaf surfaces.
This study characterized the types of interactions between Escherichia coli O157:H7 and spinach phylloepiphytic bacteria and identified those that influence persistence of E. coli O157:H7 on edible plants. A total of 1512 phylloepiphytic bacterial isolates were screened for their ability to inhibit or to enhance the growth of E. coli O157:H7 in vitro and on spinach leaf surfaces. Fifteen differ...
متن کاملInactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage.
Outbreaks associated with leafy greens have focused attention on the transfer of human pathogens to these commodities during harvest with commercial equipment. Attachment of Escherichia coli O157:H7 on new or rusty spinach harvester blades immersed in spinach extract or 10% tryptic soy broth (TSB) was investigated. Bacteriophages specific for E. coli O157:H7 were evaluated to kill cells attache...
متن کاملPersistence of enterohaemorrhagic and nonpathogenic E. coli on spinach leaves and in rhizosphere soil.
AIMS Survival of Escherichia coli O157:H7 and nonpathogenic E. coli on spinach leaves and in organic soil while growing spinach in a growth chamber was investigated. METHODS AND RESULTS Spinach plants were maintained in the growth chamber at 20 degrees C (14 h) and 18 degrees C (10 h) settings at 60% relative humidity. Five separate inocula, each containing one strain of E. coli O157:H7 and o...
متن کاملEffect of Chitosan Coating Nano-emulsion Containing Zataria multiflora and Bunium persicum Essential Oils on Escherichia Coli O157:H7 in Vacuum-packed Rainbow Trout Fillet
Background: Active antimicrobial packaging is a novel method for increasing the safety and shelf life of food products. The present study aimed to investigate the inhibitory effects of chitosan coating nano-emulsion incorporated with Zataria multiflora and Bunium persicum essential oils at the concentrations of 0.5% and 1%, respectively on E. coli O157:H7 in vacuum-packed fish samples during 12...
متن کاملRole of curli and cellulose expression in adherence of Escherichia coli O157:H7 to spinach leaves.
Shiga-toxigenic Escherichia coli O157:H7 outbreaks have been linked to consumption of fresh produce. It is generally recognized that bacterial attachment to vegetal matrices constitutes the first step in contamination of fresh produce. Cellular appendages, such as curli fibers, and cellulose, a constituent of extracellular matrix, have been suggested to be involved in E. coli attachment and per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of food protection
دوره 72 7 شماره
صفحات -
تاریخ انتشار 2009